Part Number Hot Search : 
CLR2050 2SB476W TMP87PM DTA05 TSOP6256 SBH2530 54N06 CHA3093C
Product Description
Full Text Search
 

To Download MAX5386MATE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-4599; Rev 0; 4/09
TION KIT EVALUA BLE ILA AVA
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers
Features
S Dual, 256-Tap, Linear Taper Positions S Single +2.6V to +5.5V Supply Operation S Low (< 1A) Quiescent Supply Current S 10kI, 50kI, 100kI End-to-End Resistance Values S SPI-Compatible Interface S Power-On Sets Wiper to Midscale S -40NC to +125NC Operating Temperature Range
General Description
The MAX5386/MAX5388 dual, 256-tap, volatile low-voltage linear taper digital potentiometers offer three end-to-end resistance values of 10kI, 50kI, and 100kI. Operating from a single +2.6V to +5.5V power supply these devices provide a low 35ppm/NC end-to-end temperature coefficient. The devices feature an SPIK interface. The small package size, low supply voltage, low supply current, and automotive temperature range of the MAX5386/MAX5388 make the devices uniquely suitable for the portable consumer market, battery backup industrial applications, and the automotive market. The MAX5386 includes two digital potentiometers in a voltage-divider configuration. The MAX5388 includes one digital potentiometer in a voltage-divider configuration and one digital potentiometer in a variable-resistor configuration. The MAX5386/MAX5388 are specified over an extended -40NC to +125NC temperature range and are available in 16-pin, 3mm x 3mm TQFN or 10-pin, 3mm x 5mm FMAXM packages, respectively.
MAX5386/MAX5388
Ordering Information
PART MAX5386LATE+* MAX5386MATE+ MAX5386NATE+* MAX5388LAUB+* MAX5388MAUB+* MAX5388NAUB+* PINPACKAGE 16 TQFN-EP** 16 TQFN-EP** 16 TQFN-EP** 10 FMAX 10 FMAX 10 FMAX END-TO-END RESISTANCE (kI) 10 50 100 10 50 100
Applications
Low-Voltage Battery Applications Portable Electronics Mechanical Potentiometer Replacement Offset and Gain Control Adjustable Voltage References/Linear Regulators Automotive Electronics
Functional Diagrams appear at end of data sheet.
+Denotes a lead(Pb)-free/RoHS-compliant package. *Future product--contact factory for availability. **EP = Exposed pad. Note: All devices are specified over the -40C to +125C operating temperature range. Functional Diagrams appear at end of data sheet.
Pin Configurations
SCLK 10 VDD N.C. DIN 9 8 7 CS N.C. N.C. GND
TOP VIEW
12 N.C. 13 HA 14 WA 15 LA 16
11
TOP VIEW
GND 1 LB HB WB 2 3 4 5
+
10 LA 9 WA VDD SCLK DIN
MAX5386 +
1 HB 2 WB 3 LB *EP 4 GND
6 5
MAX5388
8 7 6
CS
MAX
TQFN
*EP = EXPOSED PAD.
_______________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers MAX5386/MAX5388
ABSOLUTE MAXIMUM RATINGS
VDD to GND.............................................................-0.3V to +6V H_, W_, L_ to GND ....-0.3V to the lower of (VDD + 0.3V) and +6V All Other Pins to GND .............................................-0.3V to +6V Continuous Current in to H_, W_, and L_ MAX5386L/MAX5388L................................................... 5mA MAX5386M/MAX5388M................................................. Q2mA MAX5386N/MAX5388N ................................................. Q1mA Continuous Power Dissipation (TA = +70NC) 16 TQFN (derate 14.7mW/NC above +70NC) .........1176.5mW 10 FMAX (derate 8.8mW/NC above +70NC) .............707.3mW Operating Temperature Range ........................ -40NC to +125NC Junction Temperature .....................................................+150NC Storage Temperature Range............................ -65NC to +150NC Lead Temperature (soldering, 10s) ................................+300NC
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VDD = +2.6V to +5.5V, VH_ = VDD, VL_ = GND, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = +5V, TA = +25C. ) (Note 1) PARAMETER Resolution Integral Nonlinearity Differential Nonlinearity Dual Code Matching Ratiometric Resistor Tempco Full-Scale Error SYMBOL N INL DNL (Note 2) (Note 2) Register A = register B (DVW/VW)/DT no load MAX5386L/MAX5388L Code = FFH MAX5386M/MAX5388M MAX5386N/MAX5388N MAX5386L/MAX5388L Zero-Scale Error Code = 00H MAX5386M/MAX5388M MAX5386N/MAX5388N DC PERFORMANCE (VARIABLE-RESISTOR MODE) (Note 3) MAX5386L/MAX5388L VDD > +2.6V Integral Nonlinearity R-INL VDD > +4.75V Differential Nonlinearity R-DNL VDD R 2.6V VDD R 2.6V VDD > 4.75V Measured to GND Measured to GND No load Wiper not connected (Note 5) BW Code = 80H, 10pF load, VDD = +2.6V MAX5386L/MAX5388L MAX5386M/MAX5388M MAX5386N/MAX5388N -25 -90 600 150 75 kHz MAX5386M/MAX5388M MAX5386N/MAX5388N MAX5386L/MAX5388L MAX5386M/MAX5388M MAX5386N/MAX5388N -0.5 250 150 10 50 35 +25 DC PERFORMANCE (RESISTOR CHARACTERISTICS) Wiper Resistance (Note 4) Terminal Capacitance Wiper Capacitance End-to-End Resistor Tempco End-to-End Resistor Tolerance AC PERFORMANCE Crosstalk -3dB Bandwidth dB RW CH_, CL_ CW_ TCR DRHL 600 200 I pF pF ppm/NC % Q0.25 +0.5 LSB Q0.25 Q0.4 Q0.75 Q1.0 Q1.0 LSB -1.0 CONDITIONS MIN 256 -0.5 -0.5 -0.5 Q5 -2.3 -0.5 -0.25 2.3 +0.5 +0.25 +1.0 LSB LSB +0.5 +0.5 +0.5 TYP MAX UNITS Tap LSB LSB LSB ppm/NC
DC PERFORMANCE (VOLTAGE-DIVIDER MODE)
2
______________________________________________________________________________________
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers
ELECTRICAL CHARACTERISTICS (continued)
(VDD = +2.6V to +5.5V, VH_ = VDD, VL_ = GND, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = +5V, TA = +25C. ) (Note 1) PARAMETER Total Harmonic Distortion Plus Noise Wiper Settling Time (Note 6) POWER SUPPLIES Supply Voltage Range Standby Current DIGITAL INPUTS Minimum Input High Voltage Maximum Input Low Voltage Input Leakage Current Input Capacitance TIMING CHARACTERISTICS (Note 7) Maximum SCLK Frequency SCLK Clock Period SCLK Pulse-Width High SCLK Pulse-Width Low CS Fall to SCLK Rise Setup Time SCLK Rise to CS Rise Hold Time DIN Setup Time DIN Hold Time SCLK Rise to CS Fall Delay SCLK Rise to SCLK Rise Hold Time CS Pulse-Width High fMAX tCP tCH tCL tCSS tCSH tDS tDH tCS0 tCS1 tCSW 100 40 40 40 0 40 0 10 40 100 10 MHz ns ns ns ns ns ns ns ns ns ns VIH VIL -1 5 70 30 +1 %VDD %VDD FA pF VDD Digital inputs = VDD or GND 2.6 1 5.5 V FA SYMBOL THD+N CONDITIONS Measured at W, VH_ = 1VRMS at 1kHz MAX5386L/MAX5388L tS MAX5386M/MAX5388M MAX5386N/MAX5388N MIN TYP 0.015 300 1000 2000 ns MAX UNITS %
MAX5386/MAX5388
Note 1: All devices are 100% production tested at TA = +25C. Specifications over temperature limits are guaranteed by design and characterization. Note 2: DNL and INL are measured with the potentiometer configured as a voltage-divider (Figure 1) with H = VDD and L = GND. The wiper terminal is unloaded and measured with an ideal voltmeter. Note 3: R-DNL and R-INL are measured with the potentiometer configured as a variable resistor (Figure 1). DNL and INL are measured with the potentiometer configured as a variable resistor. H_ is unconnected and L_ = GND. For VDD = +5V, the wiper terminal is driven with a source current of 400A for the 10kI configuration, 80A for the 50kI configuration, and 40A for the 100kI configuration. For VDD = +2.6V, the wiper terminal is driven with a source current of 200A for the 10kI configuration, 40A for the 50kI configuration, and 20A for the 100kI configuration. Note 4: The wiper resistance is the worst value measured by injecting the currents given in Note 3 in to W with L = GND. RW = (VW - VH)/IW. Note 5: Drive HA with a 1kHz GND to VDD amplitude tone. LA = LB = GND. No load. WB is at midscale with a 10pF load. Measure WB. Note 6: The wiper-settling time is the worst case 0 to 50% rise time, measured between tap 0 and tap 127. H = VDD, L = GND, and the wiper terminal is loaded with 10pF capacitance to ground. Note 7: Digital timing is guaranteed by design and characterization, not production tested.
_______________________________________________________________________________________
3
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers MAX5386/MAX5388
Typical Operating Characteristics
(VDD = 5V, TA = +25C, unless otherwise noted.)
SUPPLY CURRENT vs. TEMPERATURE
MAX5386 toc01
SUPPLY CURRENT vs. DIGITAL INPUT VOLTAGE
MAX5386 toc02
SUPPLY CURRENT vs. SUPPLY VOLTAGE
MAX5386 toc03
1.0 0.8 SUPPLY CURRENT (A) 0.6 0.4 0.2 0
10 1 SUPPLY CURRENT (mA) 0.1 0.01 VDD = 2.6V VDD = 5V
1.00
VDD = 5V
0.75 IDD (A) 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 DIGITAL INPUT VOLTAGE (V)
0.50
VDD = 2.6V
0.001 0.0001 -40 -25 -10 0 20 35 50 65 80 95 110 125 TEMPERATURE (C)
0.25
0 2.5 3.0 3.5 4.0 VDD (V) 4.5 5.0 5.5
RESISTANCE (W TO L) vs. TAP POSITION (10k)
MAX5386 toc04
RESISTANCE (W TO L) vs. TAP POSITION (50k)
MAX5386 toc05
RESISTANCE (W-TO-L) vs. TAP POSITION (100kI)
100k RESISTANCE (W-TO-L) (kI) 90k 80k 70k 60k 50k 40k 30k 20k 10k 0
MAX5386 toc06
11,000 10,000 W-TO-L RESISTANCE (k) 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 0 51 102 153 TAP POSITION 204
55,000 50,000 W-TO-L RESISTANCE (k) 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5000 0
110k
255
0
51
102 153 TAP POSITION
204
255
0
51
102
153
204
255
TAP POSITION
WIPER RESISTANCE vs. WIPER VOLTAGE (10k)
MAX5386 toc07
END-TO-END RESISTANCE % CHANGE vs. TEMPERATURE
10kI
MAX5386 toc08
VARIABLE-RESISTOR DNL vs. TAP POSITION (10kI)
0.08 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.10
IWIPER = 400A
190 WIPER RESISTANCE () 170 150 130 110 90 70 VDD = 5V
VDD = 2.6V
END-TO-END RESISTANCE % CHANGE
0 -0.1
50kI
-0.2 -0.3 -0.4 -0.5
100kI
DNL (LSB)
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 WIPER VOLTAGE
-40 -25 -10 5 20 35 50 65 80 95 110 125 TEMPERATURE (NC)
0
51
102
153
204
255
TAP POSITION
4
______________________________________________________________________________________
MAX5386 toc09
210
0.1
0.10
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers
Typical Operating Characteristics (continued)
(VDD = 5V, TA = +25C, unless otherwise noted.)
VARIABLE-RESISTOR DNL vs. TAP POSITION (50kI)
MAX5386 toc10
MAX5386/MAX5388
VARIABLE-RESISTOR DNL vs. TAP POSITION (100kI)
MAX5386 toc11
VARIABLE-RESISTOR INL vs. TAP POSITION (10kI)
0.8 0.6 0.4 INL (LSB) 0.2 0 -0.2 -0.4 -0.6 -0.8 -1.0
0.08 0.06 0.04 DNL (LSB) 0 -0.02 -0.04 -0.06 -0.08 -0.10 0 0.02
IWIPER = 80A
0.08 0.06 0.04 DNL (LSB) 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.10
IWIPER = 400A
IWIPER = 400A
51
102
153
204
255
0
51
102
153
204
255
0
51
102
153
204
255
TAP POSITION
TAP POSITION
TAP POSITION
VARIABLE-RESISTOR INL vs. TAP POSITION (50kI)
MAX5386 toc13
VARIABLE-RESISTOR INL vs. TAP POSITION (100kI)
MAX5386 toc14
VOLTAGE-DIVIDER DNL vs. TAP POSITION (10kI)
0.08 0.06 0.04 DNL (LSB) 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.10
MAX5386 toc15
0.5 0.4 0.3 0.2 INL (LSB) 0 -0.1 -0.2 -0.3 -0.4 -0.5 0 0.1
IWIPER = 80A
0.5 0.4 0.3 0.2 INL (LSB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5
IWIPER = 400A
0.10
51
102
153
204
255
0
51
102
153
204
255
0
51
102
153
204
255
TAP POSITION
TAP POSITION
TAP POSITION
VOLTAGE-DIVIDER DNL vs. TAP POSITION (50kI)
MAX5386 toc16
VOLTAGE-DIVIDER DNL vs. TAP POSITION (100kI)
MAX5386 toc17
VOLTAGE-DIVIDER INL vs. TAP POSITION (10kI)
0.4 0.3 0.2 INL (LSB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5
MAX5386 toc18
0.10 0.08 0.06 0.04 DNL (LSB) 0 -0.02 -0.04 -0.06 -0.08 -0.10 0 51 102 153 204 0.02
0.10 0.08 0.06 0.04 DNL (LSB) 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.10
0.5
255
0
51
102
153
204
255
0
51
102
153
204
255
TAP POSITION
TAP POSITION
TAP POSITION
_______________________________________________________________________________________
MAX5386 toc12
0.10
0.10
1.0
5
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers MAX5386/MAX5388
Typical Operating Characteristics (continued)
(VDD = 5V, TA = +25C, unless otherwise noted.)
VOLTAGE-DIVIDER INL vs. TAP POSITION (50kI)
MAX5386 toc19
VOLTAGE-DIVIDER INL vs. TAP POSITION (100kI)
0.4 0.3 0.2 INL (LSB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5
MAX5386 toc20
TAP-TO-TAP SWITCHING TRANSIENT (CODE 127 TO 128) (MAX5386L)
0.5 0.4 0.3 0.2 INL (LSB) 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 0 51 102 153 204
0.5
MAX5386 toc21
VW-L 20mV/div
CS 5V/div
255
0
51
102
153
204
255
200ns/div
TAP POSITION
TAP POSITION
TAP-TO-TAP SWITCHING TRANSIENT (CODE 128 TO 128) (MAX5386M)
MAX5386 toc22
TAP-TO-TAP SWITCHING TRANSIENT (CODE 127 TO 128) (MAX5386N)
MAX5386 toc23
MAX5386 POWER-ON WIPER TRANSIENT CODE 0 TO 128
MAX5386 toc24
VW-L 20mV/div
VW-L 20mV/div
OUTPUT W 2V/div
CS 5V/div
CS 5V/div
VDD 2V/div
400ns/div
1s/div
2s/div
MIDSCALE FREQUENCY RESPONSE
MAX5386 toc25
CROSSTALK vs. FREQUENCY
MAX5386 toc26
THD+N vs. FREQUENCY
0.12 0.10 THD+N (%) 0.08 0.06 0.04 0.02 0
MAX5386 toc27
10
VIN = 1VP-P CW = 10pF
0 -20 CROSSTALK (dB) -40 -60 -80 -100
0.14
0 GAIN (dB)
MAX5386M
MAX5386L
-10
MAX5386L MAX5386M
MAX5386N
-20
MAX5386N
-30 0.01 0.1 1 10 100 1,000 10,000 FREQUENCY (kHz)
-120 -140 0.01 0.1 1
MAX5386N MAX5386M
MAX5386L
10
100
1000
0.01
0.10
1 FREQUENCY (kHz)
10
100
FREQUENCY (kHz)
6
______________________________________________________________________________________
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers
Pin Description
PIN MAX5386 1 2 3 4, 5 6, 7, 11, 13 8 9 10 12 14 15 16 -- MAX5388 3 4 2 1 -- 5 6 7 8 -- 9 10 -- NAME HB WB LB GND N.C. CS DIN SCLK VDD HA WA LA EP FUNCTION Resistor B High Terminal. The voltage at HB can be higher or lower than the voltage at LB. Current can flow in to or out of HB. Resistor B Wiper Terminal Resistor B Low Terminal. The voltage at LB can be higher or lower than the voltage at HB. Current can flow in to or out of LB. Ground. Both pins must be grounded. No Connection. Not internally connected. Active-Low Chip-Select Input Serial-Interface Data Input Serial-Interface Clock Input Power-Supply Input. Bypass VDD to GND with a 0.1F capacitor close to the device. Resistor A High Terminal. The voltage at HA can be higher or lower than the voltage at LA. Current can flow in to or out of HA. Resistor A Wiper Terminal Resistor A Low Terminal. The voltage at LA can be higher or lower than the voltage at HA. Current can flow in to or out of LA. Exposed Pad (TQFN Only). Internally connected to GND. Connect to ground.
MAX5386/MAX5388
VOLTAGE-DIVIDER CONFIGURATION H
VARIABLE-RESISTOR CONFIGURATION H
W
L
L
Figure 1. Voltage-Divider/Variable-Resistor Configurations
_______________________________________________________________________________________
7
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers MAX5386/MAX5388
Detailed Description
The MAX5386/MAX5388 dual, 256-tap, volatile low-voltage linear taper digital potentiometers offer three end-toend resistance values of 10kI, 50kI, and 100kI. Each potentiometer consists of 255 fixed resistors in series between terminals H and L. The potentiometer wiper, W, is programmable to access anyone of the 256 tap points on the resistor string. The potentiometers in each device are programmable independently of each other. The MAX5386/MAX5388 have an SPI interface. The MAX5386/MAX5388 include an SPI interface, which provides a 3-wire write-only serial data interface to control the wiper tap position through inputs chip select (CS), data in (DIN), and data clock (SCLK). Drive CS low to load data from DIN synchronously into the serial shift register on the rising edge of each SCLK pulse. The MAX5386/MAX5388 load the last 9 bits of clocked data once CS transitions high. See Figures 2 and 3. After all the data bits are shifted in, data are latched into the appropriate potentiometer control register when CS goes from low to high. Data written to a memory register immediately updates the wiper position. Keep CS low during the entire data stream to prevent the data from being terminated. The first bit A0 (address bit) addresses one of the two potentiometers; writing a zero in A0 addresses control register A and writing a one in A0 addresses control register B. See Table 1. The power-on reset (POR) circuitry sets the wiper to midscale (D[7:0] 1000 0000). The 8 data bits (D7-D0) indicate the position of the wiper. For D[7:0] = 0000 0000, the wiper moves to the position closest to L. For D[7:0] = 1111 1111, the wiper moves closest to H. D[7:0] is 1000 0000 following poweron for both registers A and B. Register A: The data byte writes to register A, and the wiper of potentiometer A moves to the appropriate position at the rising edge of CS. D[7:0] indicates the position of the wiper. D[7:0] = 0000 0000 moves the wiper to the position closest to L. D[7:0] = 1111 1111 moves the wiper to the position closest to H. D[7:0] is 1000 0000 following power-on. Register B: The data byte writes to register B, and the wiper of potentiometer B moves to the appropriate position at the rising edge of CS. D[7:0] indicates the position of the wiper. D[7:0] = 0000 0000 moves the wiper to the position closest to L. D[7:0] = 1111 1111 moves the wiper to the position closest to H. D[7:0] is 1000 0000 following power-on.
SPI Digital Interface
Table 1. SPI Register Map
Bit Number Bit Name Write Wiper Register A Write Wiper Register B 1 A0 0 1 2 D7 D7 D7 3 D6 D6 D6 4 D5 D5 D5 5 D4 D4 D4 6 D3 D3 D3 7 D2 D2 D2 8 D1 D1 D1 9 D0 D0 D0
8
______________________________________________________________________________________
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers MAX5386/MAX5388
COMMAND STARTED 9 BITS CS WIPER REGISTER LOADED
SCLK
DIN
A0
D7
D6
D5
D4
D3
D2
D1
D0
Figure 2. SPI Digital Interface Format
tCSW CS tCS1 tCSO tCSS tDH SCLK tDS tCH tCL tCP tCSH
DIN
Figure 3. SPI Timing Diagram
_______________________________________________________________________________________
9
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers MAX5386/MAX5388
Applications Information
Figure 4 shows a potentiometer adjusting the gain of a noninverting amplifier. Figure 5 shows a potentiometer adjusting the gain of an inverting amplifier.
Variable-Gain Amplifier
Figure 6 shows an adjustable dual linear regulator using a dual potentiometer as two variable resistors.
Adjustable Dual Linear Regulator
Figure 7 shows an adjustable voltage reference circuit using a potentiometer as a voltage-divider.
Adjustable Voltage Reference
OUT1 VIN VOUT OUT2
VOUT1 VOUT2
MAX8866
V+ W L H SET1 SET2 IN W
H
H
W L L
Figure 4. Variable-Gain Noninverting Amplifier Figure 6. Adjustable Dual Linear Regulator
+5V
H W VIN VOUT L
IN OUT H W
VREF
MAX6160
GND
L
Figure 5. Variable-Gain Inverting Amplifier
Figure 7. Adjustable Voltage Reference
10
_____________________________________________________________________________________
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers
Figure 8 shows a variable gain current-to-voltage converter using a potentiometer as a variable resistor. Figure 9 shows a positive LCD bias control circuit using a potentiometer as a voltage-divider.
Variable Gain Current to Voltage Converter
Figure 10 shows a programmable filter using a dual potentiometer. Figure 11 shows an offset voltage adjustment circuit using a dual potentiometer.
Programmable Filter
MAX5386/MAX5388
LCD Bias Control
Offset Voltage Adjustment Circuit
R3
VIN
WB LB HB R3 R1 L
VOUT VOUT
H W
IS
R2 HA R2 LA
R1
WA
VOUT = IS x ((R3 x (1 + R2/R1)) + R2)
Figure 8. Variable Gain I-to-V Converter
Figure 10. Programmable Filter
+5V WA +5V H W +30V
VOUT VOUT
HA
LA
L
HB
WB LB
Figure 9. Positive LCD Bias Control Using a Voltage-Divider Figure 11. Offset Voltage Adjustment Circuit
______________________________________________________________________________________
11
Dual, 256-Tap, Volatile Low-Voltage Linear Taper Digital Potentiometers MAX5386/MAX5388
Functional Diagrams
LA WA HA VDD
MAX5386
HB
256 DECODER
LATCH POR SPI
SCLK
WB
256 DECODER
LATCH
DIN
LB GND CS
LA
WA
VDD
MAX5388
HB
256 DECODER
LATCH POR SPI
SCLK
WB
256 DECODER
LATCH
DIN
LB GND CS
Chip Information
PROCESS: BiCMOS
PACKAGE TYPE 10 MAX 16 TQFN-EP
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.
PACKAGE CODE U10+2 T1633-5
DOCUMENT NO. 21-0061 21-0136
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12
(c)
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 2009 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc.


▲Up To Search▲   

 
Price & Availability of MAX5386MATE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X